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This work is concerned with the non-linear period, for each of the first four modes, of
planar, flexural large amplitude free vibrations of a slender, inextensible cantilever beam
carrying a lumped mass with rotary inertia at an intermediate position along its span.
Following the analysis carried out in reference [1] on a similar class of beam system, the
shear deformation and rotary inertia are assumed to be negligible, while account is taken
of axial inertia, non-linear curvature and the inextensibility condition, and an assumed
single-mode Lagrangian method is used to form directly the third order non-linear
unimodal temporal problem. Because of the strong non-linear terms in the temporal
problem, the two-term harmonic balance (2THB) method is used to obtain an approximate
solution to the period of oscillation. The 2THB results are compared, for some selected
values of sytem parameters, to those obtained by using single term harmonic balance
(STHB) and to those obtained by numerical integration of the temporal problem. Results
in non-dimensional forms are presented graphically, for each of the first four modes, for
the effect of position and magnitude of the mass and rotary inertia of the attached element
on the variation of period of oscillation with amplitude.
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1. INTRODUCTION

Many engineering structures can be modelled as a slender, flexible cantilever beam carrying
a lumped mass with rotary inertia at an intermediate point along its span. In linear theory
analysis of vibration one assumes the frequency of free vibration of such a beam system
to be independent of motion amplitude and this is valid only when the motion amplitude
is kept relatively small. Such beam systems, however, being slender and flexible, often
undergo relatively large amplitude (i.e., peak amplitudes on the order of beam length at
the lower modes) flexural vibration—as, for example, in the neighbourhood of direct or
parametric resonance frequencies [2–4], where non-linear effects no longer can be ignored.
In such cases, and in forced vibration of non-linear system in general, it is of interest to
know the free vibration frequency–amplitude relation as this relation enables one to
establish the qualitative behavior, i.e., it defines the ‘‘backbone’’ curve, of the steady state
forced response.

The problems of non-linear free and forced vibrations of beam have received
considerable attention in the past few decades. Comprehensive reviews on this subject have
been presented, e.g., by Rosenberg [5], Eisley [6], Nayfeh and Mook [7], and
Sathyamoorthy [8,9], among others. A review on works on the subject is not provided
herein; instead, the reader is referred to a recent summary [1] of the relevant literature on
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the large amplitude free vibration of beams with inertia and/or geometric non-linear
effects.

In the present work the non-linear, large amplitude free vibrations of a slender,
inextensible cantilever beam carrying a lumped mass and rotary inertia at an intermediate
position along its span are considered. Here, the meaning of ‘‘large ’’ implies that the peak
amplitude may reach a value where the non-linear terms are of an order comparable to
that of the linear ones. For example, the peak amplitude, for the lower nodes, may be of
the order of beam length; i.e., it is not restricted to the order of beam thickness. The shear
deformation and rotary inertia effects of the beam are assumed to be negligible, and the
beam is assumed to be undergoing planar flexural vibrations. With account taken of axial
inertia, non-linear curvature and the inextensibilty condition, an assumed Galerkin,
single-linear mode, Lagrangian approach is used to form directly the third order non-linear
unimodal temporal problem. The assumed deflection for each mode used in this work is
the exact linear mode shape obtained by solving the associated linear problem which takes
into account the effect of the attached lumped mass and rotary inertia. Because of the
presence of the intermediate rotary inertia and lumped mass, solving the associated linear
problem, i.e., solving the transcendental frequency equation of the linear problem and
finding the linear mode shapes, becomes rather involved algebraically. Furthermore, the
coefficients in the discrete single mode temporal problem are evaluated from integrals
involving products of the assumed mode and its derivatives. To simplify the algebra, one
may select a mode shape which satisfies the boundary condition of the linear problem but
which does not take into account the effect of the attached rotary inertia and/or lumped
mass. For example, Zavodney and Nayfeh [2] selected a linear mode shape to discretize
a parametrically excited slender, flexible cantilever beam carrying a rotary inertia and a
lumped mass, which takes into account the effect of the lumped mass but not the effect
of the attached rotary inertia. Hamdan and Shabaheh [1] used the mode shape of the base
beam (the same beam but without the attached elements) to discretize a non-linear beam
similar to the one under consideration which carries only a lumped mass. The effect of
using approximate mode shapes on the period–amplitude behavior will be discussed in the
current work.

Because of the strong non-linear terms in the temporal problem, a first order
approximate solution obtained by using the small perturbation method or a STHB
procedure may fail to yield the correct qualitative period–amplitude behavior when the
amplitude of motion becomes relatively large [10]. It is noted that several method have
been used to obtain approximate solutions for both weakly and strongly non-linear
oscillators; a review of relevant literature on this subject may be found in, e.g., reference
[10]. In the harmonic balance (HB) method, the more widely used of these methods, a
periodic solution for the dependent variable is assumed in the form of a Fourier series,
mostly truncated to only a few leading harmonics. In order to improve accuracy, one
increases the number of the retained leading harmonics in the assumed series solution.
Recently, Hamdan and Shabaneh [10], analyzed the free vibration period–amplitude
behavior of a generalized version of the strongly non-linear temporal problem considered
in this work. They showed that the application of the HB method in which only the two
leading harmonics are retained, termed herein the 2THB method, yields reasonably
accurate results over a wide range of system parameters. Based on these results, and
because of its generality and common use, the 2THB method is chosen in the current work
to obtain an approximate solution to the period of free oscillation of the strongly
non-linear temporal problem. Results in non-dimensional forms, for each of the first four
modes, are presented graphically for the effects of position and magnitude of the
intermediate lumped mass and rotary inertia on the variation of period of oscillation with
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amplitude. Comparisons of the 2THB results with those of the first order approximations
obtained by using STHB, as well as with those obtained by numerical integration of the
temporal problem, are presented for some selected values of system parameters. The
emphasis of this work is on the large amplitude motions where the non-linear terms may
be of order comparable to that of the linear ones. Hamdan and Latif [11], and others (see,
e.g., reference [12]) have presented parametric studies on the effects of attached inertia
elements on the natural frequencies of relevant linear problems. Studies of relevant
non-linear problems, however, are less abundant.

2. ASSUMPTIONS AND EQUATION OF MOTION

2.1.    

A schematic of the beam under study is shown in Figure 1. The beam is considered to
be uniform of constant length l and mass m per unit length, clamped at the base, free at
the tip, and carries a lumped mass M and rotary inertia J at an arbitrary intermediate point
s= d along its span. The thickness of the beam is assumed to be small compared to the
length so that the effects of rotary inertia and shearing deformation can be ignored.
Provided that the attached inertia element is placed symmetrically with respect to the beam
length and the beam is relatively short, e.g., the ratio of the beam length to width is Q30,
the beam’s transverse motion can be considered to be purely planar [2]. It is further
assumed that the peak amplitude of vibration may reach a certain relatively large value
(i.e., of the order of beam length for the lower modes) but the slope of the elastica may
not have a tangent perpendicular to the x-axis, i.e., u may not be equal to 290°; also the
beam is assumed to be conservative. These assumptions are the same as those used in
references [1, 13] in studying the planar non-linear vibrations of a cantilever beam systems
similar to the one under consideration. In this next subsection, following the analysis
presented in reference [1], a Galerkin–Lagrange approach is used to derive a single mode
non-linear temporal equation of motion of the beam.

2.2.   

In terms of the co-ordinate system shown in Figure 1, the potential energy V, due to
bending, of the beam is given by

V=(EIl/2)g
1

0

R2(j, t) dj, (1)

Figure 1. Sketch of the beam system under study.
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where j= s/l is a dimensionless arc length, EI is the modulus of flexural rigidity, and
R(j, t) is the radius of curvature of the beam neutral axis. In terms of the variables x,
y, the exact radius of curvature R takes the form [13]

R= l3(x'y0− x0y'), (2)

where l=1/l and a prime denotes differentiation with respect to the dimensionless
arc length j. Equation (2), and thus equation (1), can be expressed in terms of only
one variable, y, by noting that the variables x and y are related by the subsidiary relation
[13]

x'2 + y'2 = l2. (3)

Then, by using equation (3) and its derivative with respect to j to eliminate x' and x0 from
equation (2), and substituting the result into equation (1), one obtains

V=(EIl3/2)g
1

0

(1− l2y'2)−1[(1− l2y'2)y0+ l2y'2y0]2 dj. (4)

Noting, from equation (3), that (ly')2 Q 1, upon expanding the term (1− l2y'2)−1 into a
power series, equation (4), with non-linear terms retained up to fourth order, becomes

V=(EIl3/2)g
1

0

[y02 + (ly'y0)2] dj. (5)

Next the kinetic energy T of the beam is presented and then is expressed in terms of
only the variable y and its derivatives. With account taken of the axial and transverse
inertia terms and the inertias of the attached element, the kinetic energy T of the beam
in Figure 1 is given by

T=(ml/2)g
1

0

(ẋ2 + ẏ2) dj+ 1
2M(ẋ2 + ẏ2) =hl + 1

2Ju� 2=hl , (6)

where a dot denotes a differentiation with respect to time t, h= d/l is the dimensionless
relative position parameter of the attached inertia element, and u is the slope of the elastica
and is given by [2]

sin u=dy/ds= ly', (7)

where, as before, a prime denotes a differentation with respect to the dimensionless arc
length j. Substituting the trigonometric identity cos2 u=1−sin2 u into equation (7), and
differentiating the result with respect to time t, one obtains

u� 2 = (lẏ')2[1− (ly')2]−1. (8)

Expanding the square bracketed term in the right side of equation (8) into a power series,
and retaining non-linear terms up to fourth order, leads to

T=(ml/2)g
1

0

(ẋ2 + ẏ2) dj+ 1
2M(ẋ2 + ẏ2) =hl + 1

2J[(lẏ')2 + (l2ẏ'y')2]hl. (9)
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Next, it is noted that the beam consideration is assumed to be inextensible, which implies
that the length of beam neutral axis remains constant during the motion. This imposes
the constant relation [14]

(1+ lx')2 + (ly')2 =1. (10)

Rewriting equation (10) as

1+ lx'= [1− (ly')2]1/2, (11)

noting that (ly')2 Q 1, expanding the right side of equation (11) into power series, retaining
non-linear terms up to fourth order, and integrating the result from 0 to an arbitrary value
of j, one obtains

x=
−1
2 g

j

0

(ly'2 + 1
4l

3y'4) dx (12)

Differentiating equation (12) with respect to time t leads to

ẋ=
−1
2 $g

j

0

(ly'2 + 1
4l

3y'4)dx%
·
, (13)

or

ẋ2 =
1
4 $0g

j

0

ly'2 dx1
·

%
2

, (14)

where non-linear terms of order greater than four are ignored. Upon substituting equation
(14) into equation (9), the kinetic energy T of the beam becomes

T=(ml/2)g
1

0 $ẏ2 +
1
4$0g

j

0

ly'2 dx1
·

%
2

dj+
1
2

M$ẏ2 +
1
4 $0g

j

0

ly'2 dx1
·

%
2

%nl

+
1
2
l2J[ ẏ'2 + (lẏ'y')2]nl. (15)

Using equations (5) and (15) one obtains, after factoring out the term ml/2, the beam’s
one-dimensional, Lagrangian L, L=T−V, as

L=(ml/2)6g
1

0 $ẏ2 +
1
40$g

j

0

ly'2 dx%
·

1
2

% dj+ a2$ẏ2 +
1
4 0$g

j

0

ly' 2 dx%
·

1
2

%bhl

+ a1 [ ẏ'2 + (lẏ'y')2] =nl − b2g
1

0

[y02 + (lẏ'y0)2 dj7, (16)

where a1 = Jl3/m, and a2 =Ml/m are dimensionless inertia parameters of the attached
inertia element with mass M and rotary inertia J, and b2 =EIl4/m. It is to be noted that,
if desired, one may apply Hamilton’s principle, after integrating some of the terms in
equation (16), to obtain the integro-partial differential field equation of motion and the
corresponding boundary conditions. The interest in this work, however, is to obtain an
approximate, single mode, ordinary differential equation in time t by using the assumed
deflection mode method. Therefore, one can avoid the step of derivation of the
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integro–partial differential field equation and instead use any of the variational procedures,
i.e., Rayleigh–Ritz or Galerkin’s procedure, to discretize the Lagrangian L in equation
(16), and then apply the Euler–Lagrange equation to obtain the discrete temporal problem.
Accordingly an approximate, single-mode solution is assumed to be of the form

y(j, t)=f(j)u(t), (17)

where f(j) is a normalized mode shape defection, to be determined later (in section 2.3),
which is assumed to remain self-similar (i.e., independent of motion amplitude) during
motion, and u(t) is an unknown time modulation of the assumed deflection mode.
Substituting equation (17) into equation (16), one obtains the discrete, single-mode (single
co-ordinate), beam Lagrangian

L=(ml/2) [a1 u̇2 + a3l
2u̇2u2 − b2a2u2 − b2a4l

2u4], (18)

where

a1 =g
1

0

f2 dj+ a1f'2(h)+ a2f
2(h), a2 =g

1

0

f02 dj,

a3 =g
1

0 0g
j

0

f'2 dx1
2

dj+ a1f'4(h)+ a20g
j

0

f'2 dx1
2

=n , a4 =g
1

0

f'2f02 dj. (19)

Upon application of the Euler–Lagrange equation,

(d/dt)/(1L/1u̇)− 1L/1u=0, (20)

to the Lagrangian L in equation (18), one obtains, ignoring the multiplication constant
ml, the discrete, single-mode, of order three non-linearities, beam temporal problem:

a1 ü+ b2a2u+ a3l
2u2ü+ a3l

2uu̇2 +2b2a4u3 =0. (21)

It is to be noted that some of the coefficients ai in equation (21), defined by equations (19),
in general, as will be shown in section 2.4, increase sharply and attain relatively large values
at the higher modes of the beam. Therefore, for convenience, equation (21) is scaled and
converted to the dimensionless form

q̈+ q+ o1q2q̈+ o1 q̇2q+ o2q3 =0, (22)

where

o1 = a3 /(p2a1 ), o2 =2a4 /(p2a2 ), (23)

dots are now derivatives with respect to the dimensionless time t= b(a2 /a1 )1/2 t, q= pu/l
is the dimensionless displacement amplitude at the point of maximum deflection, and
p2 =V/b is the dimensionless frequency, and V is the frequency, of the assumed mode of
the associated linear beam. The first two of the three non-linear terms in equation (22)
which are inertia type due to kinetic energy of axial motion, arise as a result of using the
inextensibility condition given by equation (10). The first of these two non-linear terms
has a softening effect, while the second has a hardening effect [10]. The last of the three
non-linear terms in equation (22) is a hardening static type due to potential energy stored
in bending. It is to be noted that the present scaling procedure, which is similar to those
used in references [1, 3], makes no prior assumption regarding the relative order of
magnitude of various terms in equation (21). In particular, the arbitrary choice of the
dimensionless linear frequency parameter p in the definition of the displacement scaling
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factor is done for numerical convenience, so that the coefficients o1 and o2 in equation (22)
would not attain numerically large values for the higher modes: i.e., this scaling procedure
does not change the relative order of magnitude of the various terms in the original
equation of motion.

2.3.   

In the derivation of the approximate non-linear equation (22), describing the temporal
behavior of the beam vibration, one assumes the beam defection shape f(j) to be a
specified, self-similar (i.e., independent of motion amplitude), spatial function. This
function, which must at least satisfy the beam boundary natural conditions, i.e., must at
least be an admissible function, is taken, in this work, to be the eigenfunction (comparison
function) of the associated linear beam which satisfies the associated linear beam equation
of motion and all of its specified boundary conditions. In this case, the discretization
procedure in section 2.2 is generally referred to as Galerkin’s method, and when applied
to the present beam problem requires that the function f be a solution of the associated
linear problem [11]:

y21 (j1 )− p4y1 (j1 )=0, 0E j1 E h, (24)

y22 (j2 )− p4y2 (j2 )=0, 0E j2 E 1− h, (25)

subject to the following boundary and continuity conditions:

at j1 =0: y1 =0, y'1 =0; at j1 = h, j2 =0: y1 = y2, y'1 = y'2 ,

EI(y01 − y02 )= JV2ly'1 , EI(y11 − y12 )=−V2l3My1 ;

at j2 =1− h: y02 =0, y12 =0. (26)

Here j1 = s1 /l, j2 = s2 /l, s1 and s2 are arc lengths on the left and right sections of the beam,
p4 =mV2l4/(EI) is a dimensionless frequency constant, V2 is a natural frequency of the
linear beam, and y1 and y2 are the deflections of the centerlines of the left and right sections
of the beam. Note that the above linear problem formulation is restricted to the cases
where hQ 1; that is, the attached element cannot be placed at the tip of the beam. Also
note that the clamped–free boundary conditions in equation (26) are formulated in terms
of arc lengths si . These boundary conditions are formally the same as those formulated
in terms of horizontal co-ordinates xi in the classical linear beam theory [13]. This,
however, is not true for the matching boundary conditions in these equations, which are
assumed here to be the same as those formulated in terms of the horizontal co-ordinates
xi in the classical linear theory. The general solutions of the ordinary differential equations
(24) and (25) are, respectively,

y1 (j1 )=C1 sin (pj1 )+C2 cos (pj1 )+C3 sinh (pj1 )+C4 cosh (pj1 ), (27)

y2 (j1 )=C5 sin (pj2 )+C6 cos (pj2 )+C7 sinh (pj2 )+C8 cosh (pj2 ), (28)

where Ci , (i=1, 2, . . . , 8), are arbitrary constants to be determined by using the eight
boundary and matching conditions given by equations (26). Upon substituting equations
(27) and (28) into equations (26) one obtains a set of eight homogeneous algebraic
equations for the eight unknown constants Ci . This set of equations, in matrix form,
becomes

[dij ]{C}=0 (29)
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where [dij ] is an 8×8 coefficient matrix having the non-zero elements

d12 =1 d14 =1 d21 = p d23 = p

d31 = sn d32 = cn d33 = sh d34 = ch

d36 =−1 d38 =−1 d41 = pcn d42 =−psn

d43 = pch d44 = psh d45 =−p d47 =−p

d51 =−p2sn−8p5cn d52 =8p5sn− p2cn d53 = p2sh−8p5ch d54 = p2ch−8p5sh

d56 = p2 d58 =−p2 d61 = a2p4sn− p3cn d62 = p3sn+ a2p4cn

d63 = p3ch+ a2p4sh d64 = p3sh+ a2p4ch d65 = p3 d67 =−p3

d75 =−p2sn' d76 =−p2cn' d77 = p2sh' d78 = p2ch2

d85 =−p3cn' d86 = p3sn' d87 = p3ch' d88 = p3sh', (30)

where sn=sin (ph), cn=cos (ph), sh=sinh (ph), ch=cosh (ph), sn'= sin (p(1− h)),
cn'= cos (p(1− h)), sh'= sinh (p(1− h)), ch'= cosh (p(1− h)), and a1 = Jl3/m and
a2 =Ml/m are, as before, the inertia ratios of the attached element of mass M and rotary
inertia J located at the relative position h. A non-trivial solution of the matrix
characteristic equation (29) is possible only when the determinant of the coefficients matrix
=dij = vanishes. For a given set of parameter values a1 , a2 , and h, the non-trivial solutions
of equation (29) are obtained in this work numerically by using, first, a LU decomposition
scheme to find the characteristic determinant equation =dij ==0, then a regula–falsi is used
to find the first four roots, to the sixth decimal accuracy, of this characteristic equation:
that is, the first four dimensionless frequency parameters pi . The mode shape function fi

corresponding to a root pi is then found by using a back-substitution procedure to solve
the first seven of equations (29) for the first seven constants Ci in equations (27) and (28)
in terms of C8 . This yields the mode shape function fi as

fi =[y1 (pij1 )+ y2 (pij2 )]/C8 . (31)

Each mode shape function fi was then normalized so that it has a unity maximum value.
In order to check the accuracy of the above numerical procedure, and due to lack of data
in the technical literature, the first four frequency parameters pi obtained by using the
present procedure were compared with those available in references [11, 12] for various
degenerate cases. The agreement between the various results was exact. For example, for
a1 = a2 =0, the present procedure yielded p1 =1·875104, p2 =4·694091, p3 =7·854757,
p4 =10·995541; and for a1 =0, a2 =0·5, h=0·5, the present procedure yielded
p1 =1·581490, p2 =3·539601, p3 =7·853520, p4 =9·612364; these two sets of results where
in exact agreement with those in references [11, 12]. Examples of the first four normalized
mode shape functions fi obtained by using equation (31) for different sets of values of the
parameters a1 , a2 and h are shown in Figures 2(a–d). For example, for a1 =0·2, a2 =1,
h=0·7, the calculated values for the normalized third mode were: p3 =6·482103,
C1 =−0·101291, C2 =0·104381, C3 =0·101291, C4 =−0.104381, C5 =0·327511,
C6 =−0·541091, C7 =−0·350373, and C8 =0·477193. Figures 2(a–d) and those given in
reference [11], as well as others not shown, indicate that mode shapes of the present beam,
especially the second and higher ones, tend to change rapidly with respect to those of the
base beam (i.e., with respect to the mode shapes shown in Figure 2(a) for which
a1 = a2 =0), as the intermediate inertia parameters a1 and/or a2 become relatively large.
The normalized exact linear mode shape function fi , equation (31), and its derivatives were
used in equations (19), along with equation (23), to calculate the parameters o1 and o2 in
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Figure 2. First four modes fi for the following cases: (a) a1 = a2 =0; (b) a1 =0·5, a2 =0·1, h=0·7; (c) a1 =0·2,
a2 =1·0, h=0·7; (d) a1 =2·0, a2 =5·0, h=0·7. ———, fi ; — —, f2 ; - - - -, f3 ; ······ , f4 .

the single-mode non-linear temporal problem given by equation (22). For given a1, a2 and
h, the parameters o1 and o2 were calculated for each of the first four modes. The integrals
in equations (19) defining the coefficients ai were evaluated numerically by using Simpson’s
rule with an integration step size j=0·001, after using a symbolic manipulator program,
called Derive, to evaluate the integral (fj

0 f'2 dx)2 in the third of these equations. Following
is a sample of the results obtained for the third mode of the case shown in Figure 2(c)
for which a1 =0·2, a2 =1, h=0·7 and p= p3 =6·482103. The results were
a1 =−0·087691, a2 =154·817, a3 =1·39593, a4 =729.064, o1 =0·378861, and
o2 =0·224154.

Table 1 shows the values of o1 and o2 for each of the first four modes of the four cases
given in Figures 2(a–d) when using the exact linear fi . For each case, Table 1 also shows,
for comparison purposes, the values of o1 and o2 obtained by using the corresponding base
beam linear mode shape shown in Figure 2(a). These results, and others not shown,
indicate that, in general, when the inertia parameters a1 and/or a2 of the attached element
are not relatively small, the values of the parameters o1 and/or o2 , depending on the relative
position h of the attached element, obtained by using the exact linear mode shape can be
significantly different from those obtained by using the corresponding base beam linear
mode. It is to be noted again, that in the present beam model in equation (22) one assumes
the beam deflection to remain self-similar during the motion, i.e., to be amplitude
independent, even when the motion amplitude is relatively large. In reality, however, one
expects the deflection of the present non-linear beam at relatively large motion amplitudes
to become amplitude dependent and, thus, it may deviate significantly from the assumed
linear mode. Hamdan and Shabaneh [1] have shown that, in some cases, small variations,
i.e., variations in the range shown in Table 1, in the values of o1 and o2 can lead not only
to appreciable quantitative, but also qualitative, errors in period–amplitude behavior for
the free response of the nonlinear oscillator in equation (22), even when o1 and o2 are not
large compared to unity. Based on these results, and those shown in Table 1, one may
question the accuracy of using an assumed linear mode method, which is a frequently
used method in the analysis of non-linear continuous systems, to approximate the
large amplitude non-linear behavior of the present beam system. It is hoped, however,
that the results of the present model may be used for comparison purposes. Approximate
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analytic and numerical solutions for the non-linear oscillator in equation (22),
representing the temporal behavior of the present non-linear beam are presented in the next
section.

3. APPROXIMATE ANALYTIC SOLUTIONS

The sample calculations of the parameters oi in equation (22), presented in Table 1,
indicate that, for the range of amplitudes to be considered in this work (u/l up to 0·8 for
the first mode and up to 0·4 for the fourth mode, q= pu/l), the non-linear conservative
autonomous oscillator described by this equation is in general strongly non-linear,
specially for the second and higher modes. Therefore, an approximate analytic solution
for this oscillator obtained by using small perturbation methods will not be adequate for
the range of large amplitude vibrations to be considered in this work, as these methods
are restricted to the solution for weakly non-linear oscillators; e.g., when the amplitude
of vibration is restricted to values for which the non-linear terms in equation (22) remain
small (in this case less than unity) compared to the linear ones. In the current work, as
was indicated in section 1, the HB method is used to obtain approximate solutions to
equation (22). Single-term harmonic balance (STHB), and two-terms harmonic balance
(2THB) approximate analytic solutions are presented and compared with those obtained
by numerically integrating equation (22). Without loss of generality, the initial conditions
are taken to be q(0)=B, q̇(0)=0 where B is the amplitude of motion. Note that fmax =1,

T 1

Values of system parameters o1 and o2 in equation (22) for the first four modes obtained by
using the exact and base beam mode shapes for selected combinations of beam parameters

Exact fi Base Beam fi

ZXXXXXXXCXXXXXXXV ZXXXXCXXXXV
h a1 a2 pi o1 o2 o1 o2

– 0·00 0·00 1·875104 0·326976 0·233241 0·326976 0·233241
4·694090 1·651841 0·316578 1·651841 0·316578
7·854759 4·103424 0·285887 4·103424 0·285887

10·995577 8·381424 0·278835 8·381424 0·278835

0·70 0·05 0·10 1·691659 0·780287 0·330497 0·574519 0·233241
3·483086 2·067569 0·443412 1·570166 0·316578
6·816454 0·464160 0·150334 3·424372 0·285887
7·587792 2·791904 0·245193 1·811038 0·278835

0·70 0·20 1·00 1·334241 2·889322 0·569997 1·200419 0·233241
2·626170 3·314534 0·550754 2·863996 0·316578
6·482103 0·378861 0·224154 1·450075 0·285887
6·974931 2·614042 0·218520 2·048299 0·278835

0·70 1·00 1·00 1·038512 3·432908 1·260486 0·783540 0·233241
2·282654 0·236845 0·392351 1·045432 0·316578
6·416185 0·395492 0·226895 1·267895 0·285887
6·970787 2·635984 0·220440 0·675209 0·278835

0·70 2·00 5·00 0·847512 7·476456 1·734567 1·135901 0·233241
1·715321 0·473561 0·703051 1·781517 0·316578
6·307206 0·345341 0·238802 0·385541 0·285887
6·801119 2·153222 0·205214 1·108322 0·278835
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and f'max 2 pfmax = p, and then from equation (17), ly'max = pf'maxlumax 2 pamax , so that the
restriction =ly'=Q 1 used in section 2.2 implies that amax 2 1/p.

3.1. -   () 

According to the STHB method, with q(0)=B, q̇(0)=0, an approximate solution of
equation (22) is written as

q(t)=Bcos vt, (32)

where B is the amplitude and v is the frequency of motion. Substituting equation (32)
and its derivatives into equation (22), using the trigonometric identities
cos3 vt= 1

4 (3cos vt+cos 3vt), sin2 vt=1−cos2 vt, and collecting the cos vt and
cos 3vt terms, one obtains

[1+ 3
4 o2B2 −v2(1+ (o1 /2)B2)]cos vt+(o2 /4− (o1 /2)B2v2)cos 3vt=0. (33)

Upon ignoring the effect of the third harmonic cos 3vt, and setting the coefficient of cos vt
to zero, one obtains the following non-linear frequency–amplitude relation

v2 = (1+ 3
4 o2B2) (1+ (o1 /2)B2)−1. (34)

The period n of motion, in terms of the dimensionless time t= b(a2 /a1 )1/2t, is then obtained
by substituting n=2p/v into equation (34), which yields

n=2p(1+ (o1 /2)B2)1/2(1+ 3
4 o2B2)−1/2. (35)

For convenience, equation (35) is rewritten in terms of the dimensionless time bt and the
dimensionless displacement amplitude a= b/l=B/p (recall that q= pu/l, where p is the
linear mode eigenfrequency parameter) so that the period T of motion becomes

T=2p(a1 /a2 )1/2[1+ (o1 /2) (ap)2]1/2[1+ 3
4 o2 (ap)2]−1/2. (36)

The non-linear period amplitude relation in equation (36) represents the first order
approximation which one also obtained using classical perturbation methods. It can be
seen from this equation that for the cases where o1 and o2 are not small compared to 1,
the period T becomes nearly constant independent of the motion amplitude a: i.e.,
T:2p(1·5o2 /o1 )−1/2, as the amplitude of motion becomes of order, or greater than, 1/p. For
the cantilever beam under consideration, the dimensionless linear frequency parameter p
increases rapidly as the mode index is increased: i.e., for the case a1 = a2 =0, p=1·875104
for the first mode, and p=10·995541 for the fourth mode. Thus the above limiting value
of amplitude a at, and above, which the period T becomes nearly a constant independent
of motion amplitude a decreases rapidly as the mode index is increased. Also note that,
by setting the left side of equation (36) equal to 2p, the non-linear period T, according
to equation (36), becomes equal to the linear period and is independent of the motion
amplitude a for all values of a whenever (e1 /e2 )=1·5. This result also indicates that the
period T of the oscillator in equation (22) exhibits a softening behavior, i.e., the period
T increases with increasing amplitude a, when (o1 /o2 )q 1·5, and a hardening behavior, i.e.,
T decreases with increasing a, when (o1 /o2 )Q 1·5. Results obtained from equation (36), for
various selected values of system parameters a1 , a2 and h, are, for convenience, presented
and discussed in the next section.

3.2. -   (2) 

In order to improve the accuracy of the STHB solution, one adds more harmonics to
the assumed STHB solution. When the number of different harmonics in the assumed
solution is equal to two, the HB method is called the two-terms harmonic balance (2THB)
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method. According to this method, with q(0)=B, q̇(0)=0, one assumes an approximate
solution to equation (22) in the form

q(t)=B1 cos vt+B3 cos 3vt, (37)

where

B=B1 +B3. (38)

Equation (38) relates the total amplitude B of motion to the amplitudes B1 and B3 of the
response fundamental and third harmonics, respectively. Upon substituting equation (37)
and its derivatives into equation (22), using trigonometric identities, retaining only cos vt

and cos 2vt terms, then equating the coefficient of each of these two harmonics to zero,
one obtains the following two non-linear coupled algebraic equations:

B3 =$0·25e10B3
1 +3B3

31−0·5e10B3
1 +9B3

31%>$qv2 −1−1·5o2B2
1 +5o1v

2B2
1%, (39)

v2 =01+0·75o2$B2
1 +B1B3 +2B2

3%1>01+0·5o1$B2
1 +3B1B3 +10B2

3%1. (40)

Equations (39) and (40) along with equation (38), for a given amplitude B, define the
amplitudes B1 and B3 , respectively, of the fundamental and third harmonics, and the
frequency of the assumed period of motion of the non-linear oscillator given by equation
(22). These coupled non-linear equations were solved numerically by using a direct iterative
procedure with 10−6 accuracy. The dimensionless motion amplitude a= b/l is then
calculated by noting that B= pa, and the period n of motion is calculated by using the
relation n=2p/v, which in the dimensionless time bt becomes

T=2p(a1 /a2 )1/2/v. (41)

The dimensionless periods T, in bt time, calculated by using equations (38–41) for selected
values of beam parameters a1 , a2 and h are presented and discussed in the next section.

In additon to the above analytical solutions, equation (22) was also integrated
numerically by using the fourth order Runge–Kutta method with integration step size
Dt=10−3. Again, the initial conditions were taken to be q(0)=B= pa, q̇(0)=0, and the
period T in bt time was obtained by multiplying the numerically calculated period by the
scaling factor (a1 /a2 )1/2.

4. RESULTS AND DISCUSSION

The dimensionless period T, in time bt, of each of the first four modes of free vibration
of the cantilevered beam system shown in Figure 1 was calculated, for given values of
inertia parameters a1 , a2 and position of the attached element, analytically by using the
STHB, equation (36), and 2THB, equations (38–41), and numerically by using the fourth
order Runge–Kutta method. All of these calculations were programmed by using single
precision on a VAX/VMS version 5 digital computer. Examples of the results of these
calculations are shown in Figures (3–7), which display the non-linear period parameter T
variation with the beam dimensionless peak displacement a=(b/l)=B/p at the point of
maximum deflection for various selected values of a1 , a2 and h. The interest of this work
is in the large amplitude free motions; therefore the calculations in each case where carried
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Figure 3. Comparisons of the SHB, 2THB and numerical results for the variation of the period T with
amplitude a: (a) a1 = a2 =0, p= p1 ; (b) a1 =0·2, a2 =1·0, h=0·7, p= p3 ; (c) a1 =0·1, a2 =0·2. h=0·6, p= p3 ;
(d) a1 =0·5, a2 =0·2, h=0·6, p= p4 . ———, Numerical; — —, SHB; ----, 2THB.

out for amplitude free motions; therefore the calculations in each case where carried out
for amplitude a values up to 0·8 for the first mode and up to 0·4 for the fourth mode.

Figures 3(a–d) show comparisons between T− a curves obtained by using the
approximate STHB and 2THB analytic results and the numerical integration results, where
the exact linear mode shape function f was used in each case. The cases considered in these
four figures are, respectively as follows: (a) a1 = a2 =0, p= p1 =1·875104 (i.e., first mode),
where o1 =0·326976, o2 =0·284413, and thus (o1 /o2 )=1·15Q 1·5; (b) a1 =0·2, a2 =1,
h=0·7, p= p3 =6·482103 where o1 =0·378861, o2 =10·224154 which gives
(o1 /o2 )=1·71Q 1·8; (c) a1 =0·1, a2 =0·2, h=0·6, p= p3 =5·315102 where o1 =0·567745,
o2 =0·275332 and thus (o1 /o2 )=2·062q 1·8; (d) a1 =0·5, a2 =0·2, h=0·6,
p= p4 =8·292397, where o1 =4·041788, o2 =0·243714, and thus (o1 /o2 )=16·584w 1·5.
These figures, and others not shown, as well as others shown in references [1, 10], indicate
that

(1) when (o1 /o2 )w 1·5 or (o1 /o2)W 1·5, the accuracy of the STHB solution is reasonably
good for small, and fair for moderate, values of the dimensionless motion amplitude a,
but becomes poor as a becomes relatively large, i.e., 0·5Q aQ 1; while the accuracy of
the 2THB solution is fairly good for moderate values of a, and becomes poor, but
appreciably better than that of the STHB, for relatively large a. For given o1 /o2 w 1·5 or
o1 /o2 W 1·5, the accuracy of the STHB and that of the 2THB is better when o1 and o2 are
small compared to 1, i.e., when the system is weakly non-linear; also this accuracy is better
when o2 q o1 than when o2 Q o1 ;

(2) the accuracy of the STHB solution becomes poor, even for moderately small values
of a, when o1 /o2 approaches, from above or from below, the range 1·5Q (o1 /o2 )Q 1·8.
When o1 /o2 is, roughly, in this range, the STHB solution fails qualitatively, and perhaps
quantitatively, as it incorrectly predicts a softening T− a behavior, while the 2THB and
numerical solution predict a hardening T− a behavior (i.e., Figure 3(b)). It is to be noted
that the 2THB solution can also fail to provide the correct qualitative T− a behavior for
the present beam model in equation (22); however, this failure occurs over an appreciably
smaller subrange of the above range of the STHB solution;
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(3) the analytic STHB and 2THB, and numerical solutions shown that, for each mode,
the T− a curve starts to level off: i.e., the period T becomes nearly a constant independent
of the motion amplitude a, at relatively moderate values of A, where the value of a at which
this leveling-off begins decreases when the ratio o1 /o2 is increased, for o1 w o2, and when o1 /o2

is decreased, for o1 W o2 . Hamdan and Shabaneh [10] have shown that the T− a curves
of the non-linear conservative oscillator in equation (22) exhibit a softening behavior when,
approximately, o1 /o2 q 1·6, and hardening type when o1 /o2 Q 1·6. They also have shown
that the period T becomes a constant independent of motion amplitude a for all values
of a and equal to the linear period, i.e. T=2p, when (o1 /o2 )0 1·6. The values of system
parameters a1 , a2 , h, for which this value of the ratio o1 /o2 is obtained for a given mode
can be calculated by a trial and error procedure and has not been done in this work. Note
that this value of the ratio o1 /o2 is not possible to obtain for a cantilever beam without
an intermediate inertia element.

Figures 4(a–d), obtained numerically, show examples of the effects on the T− a curves
of using the base beam mode shape instead of the corresponding exact linear mode shape
when the inertia parameters a1 and/or a2 of the attached element are not zero. The results
in these figures, and others not shown, indicate that the use of an approximate mode shape
can have a significant effect on the predicted T− a behavior, especially when a1 and/or
a2 , depending on the relative position h of the attached element, are not small.

Figures 5(a–d), obtained numerically, show examples of the effect on the T− a behavior
of increasing the mass ratio parameter a2 of the attached element mass M to beam mass.
These results indicate that, in general, as in linear theory, increasing the mass of the
attached element, for given relative position h and relative rotary inertia a1 of the attached
element, tends to increase the period of each of the modes of beam free vibration. These
results also indicate that small changes in the mass ratio a2 can lead to an appreciable
change in the period T of each of the first modes, especially for the higher modes and at
large motion amplitudes. It is to be noted that for the case a1 = a2 =0, the t− a curve
exhibits a hardening behavior for the first mode, and a softening behavior for the second
and higher modes. When a1 and/or a1 are not zero, the T− a curve for the first mode and

Figure 4. Effect of mode shape on the period T variation with amplitude a obtained numerically: (a) f1 ;
a1 =0·05; a2 =0·1, h=0·7; (b) f2 ; a1 = a2 =1·0, h=0·8; (c) f3 ; a1 = a2 =1·0, h=0·2; (d) f4 ; a1 =2·0, a2 =5·0,
h=0·7. ———, Exact; ----, approximate.
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Figure 5. Effect of lumped mass parameter a2 on the variation of period T with amplitude a when using exact
fi for the case a1 =0·1 and h=0·6. (a) f1 ; (b) f2 ; (c) f3 ; (d) f4 . ———, a2=0·0; — —, a2 =0·1; ----, a2 =0·2;
······, a2 =0·5; —··— , a2 =1·0.

the T− a curve for the second mode each may exhibit a hardening or softening
behavior, depending on the values of the inertias a1 , a2 and position h of the attached
element.

Figures 6(a–d), obtained numerically, show the examples of the effect of increasing the
rotary inertia parameter a1 of the attached element. These results indicate that, as in linear
theory [11, 12], increasing the rotary inertia of the attached element tends to increase the
period of motion for each of the modes of beam free vibration. These results also indicate
that, depending on the position of the attached element, relatively small changes in the

Figure 6. Effect of rotary inertia parameter a1 on the variation of period T with amplitude a when using exact
fi for the case a2 =0·2 and h=0·6. (a) f1 ; (b) f2 ; (c) f3 ; (d) f4 . ———, a1=0·1; — —, a1 =0·5; ----, a1 =1·0;
· · · , a1, =2·0.
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Figure 7. Effect of lumped mass position h on the variation of period T with amplitude a when using exact
fi for the case a1 = a2 =1·0. (a) f1 ; (b) f2 ; (c) f3 ; (d) f4 . ———, h=0·2; — —, h=0·4; ----, h=0·5; ······,
h=0·7; —··— , h=0·8.

rotary inertia ratio a1 can lead to significant changes in the period T of each of the first
four modes, especially when amplitude a of motion is not relatively small.

Figures 7(a–d), obtained numerically, show examples of the effect of changing the
relative position h of the attached inertia element for the case a1 = a2 =1. These results
show that for the values of a1 , a2 and h considered in these figures the T− a curves of
the first, third or fourth mode are of the softening type, while those of the second mode
can be of the hardening or softening type depending on the relative position h of the
attached inertia element. Note that, as indicated in the previous section and as was shown
in reference [1] and other references, when a1 = a2 =0, or a1 =0 and a2 is small, i.e., when
the inextensible cantilever beam does not carry an inertia element or carries an element
having a relatively small mass and negligible rotary inertia, the T− a curves for the first
mode exhibit a hardening behavior, while those for the second and higher modes exhibit
a softening behavior. One may conclude therefore, from the present results and from those
in reference [1], that the T− a curves for the first and second modes of the present beam
can each be of the softening or hardening type depending on the inertias, in particular the
rotary inertia, and position of the attached element. The present results, and those in
reference [1], also indicate that, in general, moving the attached mass towards the clamped
end of the beam tends to increase the period of the first mode and decrease that of the
second, or higher, modes. However, as in linear theory [11,12], when the amplitude of
motion is small, the period of the second, or higher, mode goes through regions of
increasing and decreasing values as the attached mass is moved towards the clamped end
of the beam. The present results, as well as those in reference [1], also indicate that,
depending on the values of the inertia parameters a1 and a2 of the attached element,
changing the position of the attached element can lead to relatively large changes in the
period of free motion, especially when the amplitude of motion is relatively large.

5. CONCLUSIONS

The aims of the present work are to provide a simple formulation, by using well
established analytical techniques, of the problem of large amplitude, planar, flexural free



  -  167

vibrations of an inextensible beam carrying at an intermediate point along its span an
element having, relatively, a small mass and a small rotary inertia, and to study the effects
of the inertias and position of the attached element on the non-linear period of free motion
of such a beam element. Applying the assumed single-mode method to the beam
Lagrangian led directly to the non-linear ordinary differential equation describing the
temporal behavior of the beam, single-mode, vibration, and thus avoided the derivation
of the field integro–partial differential equation of motion and the associated boundary
conditions. It is shown that the inertia non-linearities arise in this case as a result of the
inextensibility of the beam. In the present analysis it is assumed that the non-linear
frequencies of the beam, which are amplitude dependent, remain widely spaced, as are the
linear ones, even when the amplitude of motion is relatively large. It is also assumed that
the beam deflection during the motion resembles a linear mode shape of the beam and
remains self-similar during the motion even when the amplitude of motion is large. These
assumptions, although simplifying the calculations considerably, may introduce significant
errors at large amplitudes especially when the ratio of the attached mass to the beam mass
is not small. For example, it was shown that even when the mass and/or the rotary inertia
of the attached element are not relatively large, the use of the base beam mode shape
instead of the corresponding exact linear mode shape can lead to significant errors in the
period of the response. It can also be seen from Figures (5–7) that, as in linear theory
[11, 12], when the inertia parameters a1 and/or a2 of the attached element are not small,
the frequencies of two consecutive modes are not as widely spaced as for the case when
a1 = a2 =0, and may become, depending on the relative position h of the attached element,
very close to each other. In such cases, one may expect the beam vibration to occur at
more than one mode simultaneously. The present results also show that the inertias and
position of an attached element have similar effects on the period of the non-linear system
as in linear theory when the amplitude of motion is small; but their effects are more
pronounced than in linear theory when the amplitude of motion is relatively large.
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